精英家教网 > 高中数学 > 题目详情
已知函数,其图象在点 处的切线方程为
(1)求的值;
(2)求函数的单调区间,并求出在区间[-2,4]上的最大值.
(1) a=1,b=. (2)8.

试题分析:(1)f′(x)=x2-2ax+a2-1,       2分
∵(1,f(1))在x+y-3=0上,∴f(1)=2,  3分
∵(1,2)在y=f(x)的图象上,∴2=-a+a2-1+b,
又f′(1)=-1,∴a2-2a+1=0,
解得a=1,b=.              6分
(2)∵f(x)=x3-x2,∴f′(x)=x2-2x,
由f′(x)=0可知x=0和x=2是f(x)的极值点,所以有
x
(-∞,0)
0
(0,2)
2
(2,+∞)
f′(x)

0

0

f(x)
?
极大值
?
极小值
?
                              8分
所以f(x)的单调递增区间是(-∞,0)和(2,+∞),单调递减区间是(0,2).    10分
∵f(0)=,f(2)=,f(-2)=-4,f(4)=8,
∴在区间[-2,4]上的最大值为8.               13分
点评:我们要灵活应用导数的几何意义求曲线的切线方程,尤其要注意切点这个特殊点,充分利用切点即在曲线方程上,又在切线方程上,切点处的导数等于切线的斜率这些条件列出方程组求解。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)已知函数(其中为常数,)为偶函数.
(1) 求的值;
(2) 用定义证明函数上是单调减函数;
(3) 如果,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义在R上的偶函数对任意,有,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义上的函数满足:对于任意且当时有,若的最大值、最小值分别为M,N,M+N等于(        )
A.2011 B.2012C.4022 D.4024

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若对任意正实数x,不等式恒成立,求实数k的值;
(Ⅲ)求证:.(其中

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的定义域为,对于任意的,则不等式的解集为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.

查看答案和解析>>

同步练习册答案