精英家教网 > 高中数学 > 题目详情

设函数是定义在上的函数,并且满足下面三个条件:(1)对正数x、y都有;(2)当时,;(3)。则

   (Ⅰ)求的值;

   (Ⅱ)如果不等式成立,求x的取值范围.

   (Ⅲ)如果存在正数k,使不等式有解,求正数的取值范围.

(1)2;(2);(3)


解析:

解:(Ⅰ)令易得.而

       且,得

   (Ⅱ)设,由条件(1)可得,因,由(2)知,所以,即上是递减的函数.

       由条件(1)及(Ⅰ)的结果得:其中,由函数上的递减性,可得:,由此解得x的范围是

   (Ⅲ)同上理,不等式可化为

,此不等式有解,等价于,在的范围内,易知,故即为所求范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=
2a-1a+1
,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0)、斜率为1的射线;又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线.求函数f(x)的解析式,画出程序框图,并编写一个程序,对每一个输入的x值,求出相应的函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=数学公式,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题分A,B类,满分12分,任选一类,若两类都选,以A类记分)

(A类)已知函数的图象恒过定点,且点又在函

的图象.

(1)求实数的值;                (2)解不等式

(3)有两个不等实根时,求的取值范围.

(B类)设是定义在上的函数,对任意,恒有

.

⑴求的值;     ⑵求证:为奇函数;

⑶若函数上的增函数,已知,求

取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省徐州三中高三(上)月考数学试卷(解析版) 题型:填空题

设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=,则a的取值范围是   

查看答案和解析>>

同步练习册答案