精英家教网 > 高中数学 > 题目详情
(2012•济南三模)已知α、β是三次函数f(x)=
1
3
x3+
1
2
ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),则
b-3
a-2
的取值范围是(  )
分析:因为函数有两个极值,则f'(x)=0有两个不同的根,即△>0,又f'(x)=x2+ax+2b,又α∈(0,1),β∈(1,2),所以
2b>0
1+a+2b<0
4+2a+2b>0
b-3
a-2
的几何意义是指动点P(a,b)到定点A(2,3)两点斜率的取值范围,做出可行域,能求出
b-3
a-2
的取值范围.
解答:解:因为函数有两个极值,
则f'(x)=0有两个不同的根,
即△>0,
又f'(x)=x2+ax+2b,
又α∈(0,1),β∈(1,2),
所以有
f′(0)>0
f′(1)<0
f′(2)>0

2b>0
1+a+2b<0
4+2a+2b>0

b-3
a-2
的几何意义是指动点P(a,b)到定点A(2,3)两点斜率的取值范围,
做出可行域如图,
由图象可知当直线经过AB时,斜率最小,
此时斜率为k=
1-3
-3-2
=
2
5

直线经过AD时,斜率最大,
此时斜率为k=
0-3
-1-2
=1

所以
2
5
b-3
a-2
<1

故选B.
点评:本题考查函数在某点取得极值的应用,解题时要认真审题,仔细解答,注意可行域的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济南三模)经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N﹢)的旅游人数f(t) (万人)近似地满足f(t)=4+
1t
,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.
(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N)的函数关系式;
(2)求该城市旅游日收益的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)某旅游景点预计2013年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=
1
2
x(x+1)•(39-2x),(x∈N*,且x≤12).已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(I)写出2013年第x月的旅游人数f(x)(单位:人)与x的函数关系式;
(II)试问2013年第几月旅游消费总额最大,最大月旅游消费总额为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且2PA=AD,E、F、G、H分别是线段PA、PD、CD、BC的中点.
(Ⅰ)求证:BC∥平面EFG;
(Ⅱ)求证:DH⊥平面AEG;
(Ⅲ)求三棱锥E-AFG与四棱锥P-ABCD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)已知直线l:y=x+1,圆O:x2+y2=
3
2
,直线l被圆截得的弦长与椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长相等,椭圆的离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)设函数f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)导函数.
(I)求函数f(x)的单调递增区间;
(Ⅱ)当k为偶数时,数列{an}满足a1=1,anf(an)
=a
2
n+1
-3
.证明:数列{
a
2
n
}中不存在成等差数列的三项;
(Ⅲ)当k为奇数时,设bn=
1
2
f
(n)-n
,数列{bn}的前n项和为Sn,证明不等式(1+bn)
1
bn+1
e对一切正整数n均成立,并比较S2012-1与ln2012的大小.

查看答案和解析>>

同步练习册答案