精英家教网 > 高中数学 > 题目详情

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,

(1)若方程C表示圆,求实数m的范围;

(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=,求m的值.

【答案】(1)(﹣∞,5)(2)m=4

【解析】

(1)由圆的一般方程的定义知4+16﹣4m>0,由此能法语出实数m的取值范围.

(2)求出圆心到直线x+2y﹣4=0的距离,由此利用已知条件能求出m的值.

(1)∵方程C:x2+y2﹣2x﹣4y+m=0表示圆,

∴D2+E2﹣4F>0,

即4+16﹣4m>0解得m<5,

实数m的取值范围是(﹣∞,5).

(2)∵方程C:x2+y2﹣2x﹣4y+m=0,

∴(x﹣1)2+(y﹣2)2=5﹣m,

圆心(1,2)到直线x+2y﹣4=0的距离d==,(8分)

圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=

解得m=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有ff(x)-f(y),当x>1时,有f(x)>0。

(1)求f(1)的值;

(2)判断f(x)的单调性并证明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知图甲中的图象对应的函数y=f(x),则图乙中的图象对应的函数在下列给出的四式中只可能是(  )

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点,且圆心在直线上,过点的直线交圆两点,过点分别做圆的切线,记为.

Ⅰ)求圆的方程;

Ⅱ)求证:直线的交点都在同一条直线上,并求出这条直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)点Dx轴上一点,过Dx轴的垂线交椭圆C于不同的两点MN,过DAM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案