精英家教网 > 高中数学 > 题目详情

已知函数满足,对于任意的实数都满,若,则函数的解析式为(   )

       A.           B.  C.          D.

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常数);
②对于D内任意y0,当y0∉[a,b],总有f(y0)<C.
我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012届上海市高三第一学期期中理科数学试卷 题型:解答题

若定义在上的函数满足条件:存在实数,使得:

⑴ 任取,有是常数);

⑵ 对于内任意,当,总有

我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:

(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。

(2) 已知是“平顶型”函数,求出 的值。

(3)对于(2)中的函数,若上有两个不相等的根,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(上海秋季)解析版(理) 题型:解答题

 [番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

 

 

 

 


 [番茄花园1]22.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆市铁人中学高三(上)第二次段考数学试卷(解析版) 题型:选择题

下列说法中,正确的是( )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x<a,则f(x)<0.
A.①④
B.①④⑤
C.②③④
D.①⑤

查看答案和解析>>

同步练习册答案