精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,满足3a4=7a7,且a1>0,Sn是数列{an}的前n项的和,若Sn取得最大值,则n取值为(  )
分析:把a1和d代入3a4=7a7,求得a1=-
33
4
d,进而可判断a9>0,a10<0,故可知数列前9项均为正数,进而可知答案.
解答:解:∵3a4=7a7,且a1>0,
∴数列的公差d<0
∵3a4=7a7
∴3(a1+3d)=7(a1+6d)
整理得a1=-
33
4
d
∴a9=a1+8d>0,a10=a1+9d<0
∴前9项和Sn最大.
故选C.
点评:本题主要考查了等差数列的性质.数列的单调性.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案