精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
【答案】分析:(I)对函数求导,根据函数的单调性得到函数的导函数在定义域上不小于0,恒成立,根据基本不等式求出b的范围.
(II)把函数在规定的区间上有零点,相当于函数对应的方程在这个区间上有解,构造新函数,根据对函数求导得到函数最值,求出结果.
(III)设出点的坐标,写出直线的方程,根据直线平行,得到斜率之间的关系,构造新函数,对新函数求导,得到两个结论是矛盾的.
解答:解:(I)h(x)=lnx+x2-bx,且函数的定义域为(0,+∞)
∴依题知对(0,+∞)恒成立,

∵x>0,

(II)函数k(x)=g(x)-2f(x)-x2在[1,3]上恰有两个不同的零点等价于方程
x-2lnx=a,在[1,3]上恰有两个相异实根.
令m(x)=x-2lnx,

∴m(x)在[1,2]上单减,在(2,3]上单增,
m(x)的最小值是2-2ln2
故2-2lnx<k<3-2ln3
(III)设点P(x1,y1)Q(x2,y2
则PQ的中点R的横坐标
C1在点M处的切线的斜率为
C2在点N处的切线的斜率为+b
假设C1点M处的切线与C2在点N处的切线平行,则斜率相等
即ln=

则lnu=
令r(u)=lnu-  (u>1)

∵u>1,r′(u)>0
∴r(u)单调递增,
故r(u)>r(1)=0,lnu>
∵①与②矛盾,
∴假设不成立,故C1点M处的切线与C2在点N处的切线不平行.
点评:本题考查函数的导函数的应用,本题是一个压轴题目,这个题目可以出现在高考卷的最后两个题目的位是一个比较困难的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案