精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中a为常数.

时,设函数,判断函数上是增函数还是减函数,并说明理由;

设函数,若函数有且仅有一个零点,求实数a的取值范围.

【答案】(1)见解析;(2)

【解析】

代入a的值,求出的解析式,判断函数的单调性即可;

由题意把函数有且仅有一个零点转化为有且只有1个实数根,通过讨论a的范围,结合二次函数的性质得到关于a的不等式组,解出即可.

(1)由题意,当时,,则

因为,又由递减,

所以递增,

所以根据复合函数的单调性,可得函数单调递增函数;

,得,即

若函数有且只有1个零点,

则方程有且只有1个实数根,

化简得

有且只有1个实数根,

时,可化为,即

此时,满足题意,

时,由得:

,解得:

时,方程有且只有1个实数根,

此时,满足题意,

时,

的零点,则,解得:

的零点,则,解得:

函数有且只有1个零点,所以

综上,a的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数满足,且上无最小值,则______,函数的单调减区间为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的取值范围是.

(1)求的值;

(2)若不等式恒成立,求实数的取值范围;

(3)若函数有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列椭圆的标准方程:

1)已知椭圆长轴是短轴的倍,并且过点

2)已知椭圆经过两点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数fx)=﹣x36x29x+3

1)求fx)的单调区间;

2)求fx)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AA1AC,且ABACDE分别为是A1C1BB1的中点.

1)求证:A1C⊥平面ABC1

2)求证:DE平面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当的单调区间和极值

(2)若直线是曲线的切线的值.

查看答案和解析>>

同步练习册答案