精英家教网 > 高中数学 > 题目详情

【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0123四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码之和等于6,则中一等奖,等于5中二等奖,等于43中三等奖.

1)求中三等奖的概率;

2)求中奖的概率.

【答案】1 2

【解析】

1)这是一个古典概型,先得到从装有编号为0123四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次的基本事件总数,再列举出的两个小球号码之和等于43基本事件的种数,代入公式求解.

2)按照(1)的方法,再求得中一等奖和中二等奖的概率,然后利用互斥事件的概率,将一,二,三等奖的概率求和即可.

1)从装有编号为0123四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次的基本事件总数为种,

取出的两个小球号码之和等于43基本事件有:,共7.

所以中三等奖的概率

2)取出的两个小球号码之和6基本事件有:,共1.

所以中一等奖的概率

取出的两个小球号码之和5基本事件有:,共2.

所以中二等奖的概率

所以中奖的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示是一个正方体的平面展开图,在这个正方体中平面ADE平面ABF平面平面AFN平面平面NCF.以上四个命题中,真命题的序号是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,短轴长为2.直线l:y=kx+m与椭圆C交于M,N两点,又l与直线 分别交于A,B两点,其中点A在第一象限,点B在第二象限,且△OAB的面积为2(O为坐标原点).

(1)求椭圆C的方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足an=2an-1+2n+1(n∈N*n≥2), .

(1)求的值;

(2)是否存在一个实数t,使得 (n∈N*),且数列{}为等差数列?若存在,求出实数t;若不存在,请说明理由;

(3)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

Ⅰ)当,求曲线在点处的切线方程;

Ⅱ)求函数的单调区间;

Ⅲ)已知函数处取得极小值,不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选择适当的证明方法证明下列问题

(1)设是公比为的等比数列且,证明数列不是等比数列.

(2)设为虚数单位,为正整数,,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一智能扫地机器人在处发现位于它正西方向的处和北偏东30°方向上的处分别有需要清扫的垃圾,红外线感应测量发现机器人到的距离比到的距离少0.4米,于是选择沿路线清扫,已知智能扫地机器人的直线行走速度为0.2,忽略机器人吸入垃圾及在处旋转所用时间,10秒钟完成了清扫任务.

1两处垃圾的距离是多少?

2)智能扫地机器人此次清扫行走路线的夹角的正弦值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案