精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|x-1|+|x-a|.
(1)当a=2时,解不等式f(x)≥4;
(2)若不等式f(x)≥a恒成立,求实数a的取值范围.

分析 (1)当a=2时,由f(x)≥4得$\left\{{\begin{array}{l}{x≤1}\\{3-2x≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{1<x<2}\\{1≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x-3≥4}\end{array}}\right.$,从而解得;
(2)由不等式的性质得f(x)≥|a-1|,从而化恒成立为|a-1|≥a,从而解得.

解答 解:(1)当a=2时,由f(x)≥4得,
|x-1|+|x-2|≥4,
即$\left\{{\begin{array}{l}{x≤1}\\{3-2x≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{1<x<2}\\{1≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x-3≥4}\end{array}}\right.$,
解得:$x≤-\frac{1}{2}$,或$x≥\frac{7}{2}$;
故原不等式的解集为$\left\{{x\left|{x≤-\frac{1}{2},}\right.}\right.$或$\left.{x≥\frac{7}{2}}\right\}$.
(2)由不等式的性质得:f(x)≥|a-1|,
要使不等式f(x)≥a恒成立,
则只要|a-1|≥a,
解得:$a≤\frac{1}{2}$,
所以实数a的取值范围为$({-∞,\frac{1}{2}}]$.

点评 本题考查了绝对值不等式的应用及恒成立问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,5},则∁U(A∪B)等于(  )
A.{6,8}B.{5,7}C.{4,6,8}D.{1,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于任意两个实数a,b定义运算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≤b)}\\{b(a>b)}\end{array}\right.$,则函数f(x)=x2*[(6-x)*(2x+15)]的最大值为(  )
A.25B.16C.9D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若中心在原点的双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为$\frac{5}{4}$或$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(n)=$\left\{\begin{array}{l}{0,x=1}\\{f(n-1)+3,(n∈{N^*},n≥2)}\end{array}$,则f(3)等于(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 2x-y-3≤0\end{array}\right.$则目标函数z=2x+3y的最大值为(  )
A.7B.8C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,试分析该几何体结构特征并画出物体的实物草图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.焦点为(0,±3),且与双曲线$\frac{x^2}{2}-{y^2}=1$有相同的渐近线的双曲线方程是(  )
A.$\frac{x^2}{3}-\frac{y^2}{6}=1$B.$\frac{y^2}{3}-\frac{x^2}{6}=1$C.$\frac{y^2}{6}-\frac{x^2}{3}=1$D.$\frac{x^2}{6}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC中,角A、B、C的对应边分别为a、b、c,且满足2asin(C+$\frac{π}{6}$)=b:
(1)求A的值:
(2)若b+2c=2,求a的最小值.

查看答案和解析>>

同步练习册答案