分析 实数x,y满足$xy+3x=3(0<x<\frac{1}{2})$,可得x=$\frac{3}{y+3}$∈$(0,\frac{1}{2})$,解得y>3.则$\frac{3}{x}+\frac{1}{y-3}$=y+3+$\frac{1}{y-3}$=y-3+$\frac{1}{y-3}$+6,利用基本不等式的性质即可得出.
解答 解:∵实数x,y满足$xy+3x=3(0<x<\frac{1}{2})$,
∴x=$\frac{3}{y+3}$∈$(0,\frac{1}{2})$,解得y>3.
则$\frac{3}{x}+\frac{1}{y-3}$=y+3+$\frac{1}{y-3}$=y-3+$\frac{1}{y-3}$+6≥$2\sqrt{(y-3)•\frac{1}{y-3}}$+6=8,当且仅当y=4(x=$\frac{3}{7}$)时取等号.
故答案为:8.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬q | B. | (¬p)∨(¬q) | C. | p∧q | D. | p∧(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com