精英家教网 > 高中数学 > 题目详情

【题目】已知abc分别为内角ABC的对边,若同时满足以下四个条件中的三个:①,②,③,④.

1)条件①②能否同时满足,请说明理由;

2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应的面积.

【答案】1)不能同时满足①② (2)若满足①③④时,则的面积为,若满足②③④时,则的面积为.

【解析】

1)由①根据余弦定理得到,进一步得到,由②结合正弦定理得到,从而得到不成立,由此可得答案;

2)由(1)知,满足①③④或②③④,若满足①③④,根据余弦定理求出,再根据三角形的面积公式可得面积;若满足②③④,根据正弦定理得到,由勾股定理求出,根据直角三角形的面积公式可得面积.

1)由①得:

由余弦定理.

由②及正弦定理,得:

,因为

,∵,∴.

因为

所以.所以,矛盾.

所以不能同时满足①②.

2)由(1)知,满足①③④或②③④

满足①③④

因为

所以,即

解得(舍去).

的面积

另:若满足②③④

,即,则,所以

所以

所以的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列满足: .为数列的前项和.

(Ⅰ)求证:对任意正整数,有

(Ⅱ)设数列的前项和为,求证:对任意,总存在正整数,使得时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用abcd表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X|a1|+|b2|+|c3|+|d4|

1)求该业主获得礼品的概率;

2)求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB的中点.

1)证明:CF∥平面AEB1

2)若ACBCAA14,∠ACB90°,求三棱锥B1ECF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,且过点

1)求椭圆的标准方程;

2)若为坐标原点,为直线上的一动点,过点作直线与椭圆相切于点,若的面积,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中(如图1),,点ECD上,且,将沿AE折起,使得平面平面ABCE(如图2),GAE中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)在线段BD上是否存在点P,使得平面ADE?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若,对恒成立,求实数的取值范围;

3)当时,设.若正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,D,E分别是的中点.

(1)求证:DE∥平面

(2)若,求证:平面平面.

查看答案和解析>>

同步练习册答案