精英家教网 > 高中数学 > 题目详情

【题目】设min{m,n}表示m、n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=min{( x2 , log2(4x)}(x>0),若x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为(
A.﹣4
B.﹣3
C.﹣2
D.0

【答案】C
【解析】解:当( x2=log2(4x),解得x=1, 当0<x≤1时,( x2≥log2(4x),
当x>1时,( x2<log2(4x),
∴g(x)=min{( x2 , log2(4x)}(x>0)=
∴当0<x≤1时,g(x)的值域为(﹣∞,2],当x>1时,g(x)值域为(0,2),
∴g(x)的值域为(﹣∞,2]
∵f(x)=x2+8x+14=(x+4)2﹣2,其对称轴为x=﹣4,
∴f(x)在[﹣5,﹣4]上为减函数,在(﹣4,a]上为增函数,
∵f(﹣5)=﹣1,f(a)=a2+8a+14
当﹣4≤a≤﹣3时,函数f(x)的值域为[﹣2,﹣1],
当a>﹣3时,函数f(x)的值域为[﹣2,a2+8a+14],
x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,
∴a2+8a+14≤2,
解得﹣3<a≤﹣2,
综上所述a的范围为[﹣4,﹣2],
∴a的最大值为﹣2,
故选:C
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:k∈N* , 对于 ,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“ ”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等. 为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:

年龄

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

受访人数

5

6

15

9

10

5

支持发展
共享单车人数

4

5

12

9

7

3


(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;

年龄低于35岁

年龄不低于35岁

合计

支持

不支持

合计


(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望. 参考数据:

P(K2≥k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2= ,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1, = + (n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1+a (n∈N*),求数列{2nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于110cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣mex(m∈R,e为自然对数的底数)
(1)讨论函数f(x)的单调性;
(2)若f(x)≤e2xx∈R恒成立,求实数m的取值范围;
(3)设x1 , x2(x1≠x2)是函数f(x)的两个两点,求证x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

同步练习册答案