精英家教网 > 高中数学 > 题目详情
1.如图所示,已知单位正方体ABCD-A′B′C′D′,E是正方形BCC′B′的中心.
(1)求AE与下底面所成角的大小;
(2)求异面直线AE与DD′所成的角的大小.
(理科)(3)求二面角E-AB-C的大小.

分析 (1)过E作EF⊥平面ABCD,F为垂足,∠EAF就是求AE与下底面所成角的大小,由此能求出AE与下底面所成交的大小.
(2)由EF∥CC'∥DD',知∠AEF就是异面直线AE与DD'所成的角,由此能求出AE与DD'所成交的大小.
(3)由BE⊥AB,BC⊥AB,知∠EBC就是二面角E-AB-C的平面角,由此能求出二面角E-AB-C的大小.

解答 解:(1)过E作EF⊥平面ABCD,F为垂足,
∴AF是AE在底面ABCD上的射影,
∴∠EAF就是求AE与下底面所成角的大小,(2分)
在Rt△EAF中,tan∠EAF=$\frac{EF}{AF}$=$\frac{\frac{1}{2}}{\sqrt{1+\frac{1}{4}}}$=$\frac{\sqrt{5}}{5}$,
$∠EAF=arctan\frac{{\sqrt{5}}}{5}$,(3分)
∴AE与下底面所成角的大小为$arctan\frac{{\sqrt{5}}}{5}$.
(2)∵EF∥CC'∥DD',
∴∠AEF就是异面直线AE与DD'所成的角,(2分)
在Rt△EAF中,tan∠AEF=$\frac{AF}{EF}=\frac{\sqrt{1+\frac{1}{4}}}{\frac{1}{2}}$=$\sqrt{5}$,
$∠AEF=arctan\sqrt{5}$,
因此,AE与DD'所成交的大小为$arctan\sqrt{5}$.                     (3分)
(3)∵AB⊥平面BCC'B',∴BE⊥AB,BC⊥AB,
∴∠EBC就是二面角E-AB-C的平面角,(2分)
∴∠EBC=45°,
∴二面角E-AB-C的大小为 45°(2分)

点评 本题考查线面角、二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数$y=2\sqrt{2}sin(ωx+φ)$(其中ω>0,0<φ<π)的图象的一部分如图所示,则(  )
A.$ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$B.$ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$C.$ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$D.$ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=xlnx的最小值为(  )
A.-e-1B.-eC.e2D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正四面体ABCD的四个面BCD,ACD,ABD,ABC的中心,分别为O1,O2,O3,O4则直线O1O2与O3O4所成角的大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点P(0,3)的直线m与椭圆C交于A,B两点,若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点 A(-4,0),B(4,0),C(0,4),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则 b的取值范围是(  )
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知2弧度的圆心角所对的半径长为2,那么这个圆心角所对的弧长是(  )
A.2B.sin2C.$\frac{2}{sin1}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如下图所示的程序框图,则输出的结果是32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个屋顶的某一个斜面成等腰梯形,最上面一层铺了21块瓦片,往下每一层多铺一块瓦片,斜面上铺了20层瓦片,问共铺了多少块瓦片.

查看答案和解析>>

同步练习册答案