精英家教网 > 高中数学 > 题目详情

【题目】函数是定义在上的奇函数,且函数为偶函数,当时,,若有三个零点,则实数的取值集合是(

A.B.

C.D.

【答案】C

【解析】

由条件可推得函数是以4为周期的周期函数,且图象关于直线对称,关于原点对称,作出函数与函数的图象,结合图象即可得实数的范围.

由已知得,

,所以函数的图象关于直线对称,关于原点对称,又

进而有,所以得函数是以4为周期的周期函数,

有三个零点可知函数与函数的图象有三个交点,

当直线与函数图象在上相切时,即有两个相等的实数根,即

得,

时,,作出函数与函数的图象如图:


由图知当直线与函数图象在上相切时,

数形结合可得有三个零点时,实数满足

再根据函数的周期为4,可得所求的实数的范围.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图①,在平面五边形中,是梯形,是等边三角形.现将沿折起,连接得如图②的几何体.

1)若点的中点,求证:平面

2)若,在棱上是否存在点,使得二面角的余弦值为?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.已知函数.

1)当时,求的极值;

2)若在区间上有且只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某地51日至15日日平均温度变化的折线图,日平均温度高于20度低于27度时适宜户外活动,某人随机选择51日至514日中的某一天到达该地停留两天(包括到达当日).

1)求这15天日平均温度的极差和均值;

(2)求此人停留期间只有一天的日平均温度适宜户外活动的概率;

(3)由折线图判断从哪天开始连续三天日平均温度的方差最大?(写出结论,不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验.

方式二:混合检验,将其中份血液样本分别取样混合在一起检验,若不是阳性,检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.现取其中份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求关于的函数关系式

2)若与干扰素计量相关,其中是不同的正实数,满足都有成立.

(ⅰ)求证:数列为等比数列;

(ⅱ)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:

①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为,正四棱锥的体积为,则;⑤它们能拼成一个斜三棱柱.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角ABC的对边分别为abc

1)若还同时满足下列四个条件中的三个:①,②,③,④的面积,请指出这三个条件,并说明理由;

2)若,求周长L的取值范围.

查看答案和解析>>

同步练习册答案