精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求的值.

(I)利用导数法求解单调区间即可证明;(II)t=2

解析试题分析:(I)f’(x)=axlna+2x-lna=(ax-1) lna +2x 
当a>1时,lna >0
当x∈(0,+∞)时,ax-1>0,2x>0
∴f’(x)>0,∴f(x)在(0,+∞)↑
(II)当a>1时,x∈(-∞,0)时,ax-1<0,2x<0
f’(x)<0,∴f(x)在(-∞,0)↓
当0<a<1时, x∈(0,+∞)时,lna <0, ax-1<0,
f’(x)>0,f(x)在(0,+∞)↑
x ∈(-∞,0)时, ax-1>0, lna <0
f’(x)<0, f(x)在(-∞,0)↓
∴当a>0且a≠1时,f(x) 在(-∞,0)↓,f(x)在(0,+∞)↑
∴x=0是f(x)在k上唯一极小值点,也是唯一最小值点.
f(x)min=f(0)=1
若y=[f(x)-t]-1有三个零点,即|f(x)-t|=1,f(x)=t±1有三个根,所以t+1>t-1
∴t-1="f" (x)min= 1,∴t=2
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,设函数
(1)若,求函数上的最小值
(2)判断函数的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的最小值;
(2)若函数的图像恰有一个公共点,求实数a的值;
(3)若函数有两个不同的极值点,且,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数
(Ⅰ)若,求的值及曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值。

查看答案和解析>>

同步练习册答案