精英家教网 > 高中数学 > 题目详情

,函数.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间.

(Ⅰ);(Ⅱ)详见解析.

解析试题分析:(Ⅰ)本小题首先需要对原函数求导得,然后代入
(Ⅱ)本小题首先令,得,然后分析二根之间的关系,需要分类讨论,按进行.
试题解析:(Ⅰ)
 .                                           3分
(Ⅱ)令,得                         4分
函数定义域为R,且对任意R,
,即时,
的单调递增区间是.          6分
,即时,



0




+
0
-
0
+


 

 

所以 的单调递增区间是,单调递减区间是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)如果,求函数的单调递减区间;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若,求最大值;
(2)已知正数满足.求证:
(3)已知,正数满足.证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=,g(x)=ln(2ex)(其中e为自然对数的底数)
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由:
3)数列{}中,a1=1,=g()(n≥2),求证:<1且

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的两个极值点,其中
(1)求的取值范围;
(2)若,求的最大值.注:e是自然对数的底.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

查看答案和解析>>

同步练习册答案