精英家教网 > 高中数学 > 题目详情

【题目】某校为了解该校多媒体教学普及情况,根据年龄按分层抽样的方式调查了该校50名教师,他们的年龄频数及使用多媒体教学情况的人数分布如下表:

(1)由以上统计数据完成下面的列联表,并判断是否有的把握认为以40岁为分界点对是否经常使用多媒体教学有差异?

附:.

(2)若采用分层抽样的方式从年龄低于40岁且经常使用多媒体的教师中选出6人,再从这6人中随机抽取2人,求这2人中至少有1人年龄在30-39岁的概率.

【答案】(1)见解析;(2)

【解析】试题分析:(1)根据统计数据,可得列联表,根据列联表中的数据,计算的值,即可得到结论;(2)由题意,抽取6人,岁有2人,分别记为岁有4人,利用列举法则抽取的结果共有15种,至少有1人年龄在岁有14种,故可得其概率.

试题解析:(1)根据所给数据可得如下列联表

由表中数据可得:.

∴有的把握认为以40岁为分界点对是否经常使用多媒体教学有差异 .

(2)由题意,抽取6人,岁有2人,分别记为岁有4人,分别记为;则抽取的结果共有15种:

,

设“至少有1人年龄在岁”记为事件,则事件包含的基本事件有14种

,即至少有1人年龄在岁的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区工会利用 “健步行APP”开展健步走积分奖励活动会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分)为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为 九组,整理得到如下频率分布直方图

求当天这1000名会员中步数少于11千步的人数

从当天步数在 的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;

写出该组数据的中位数(只写结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直:x+my-2m=0与动直线:mx-y-4m+2=0相交于点M,记动点M的轨迹为曲线C.

(1)求曲线C的方程;

(2)过点P(-1,0)作曲线C的两条切线,切点分别为A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题,

①双曲线与椭圆有相同的焦点;

②在平面内,设为两个定点,为动点,且,其中常数为正实数,则动点的轨迹为椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④过双曲线的右焦点作直线交双曲线于两点,若,则这样的直线有且仅有3.

其中真命题的个数为( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(为大于0的常数).现随机抽取6件合格产品,测得数据如下:

对数据作了初步处理,相关统计位的值如下表:

(1)根据所给数据,求关于的回归方程;

(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行使车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5米.若行车道总宽度AB为6米,则车辆通过隧道的限制高度是______米(精确到0.1米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段BC,如图所示.

(1)求曲线段OABC对应的函数的解析式;

(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQQPPN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:050为优;51100为良;101150为轻度污染;151200为中度污染;201300为重度污染;>300为严重污染.一环保人士记录了某地2020年某月10天的AQI的茎叶图如图所示.

1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共有30天计算)

2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.

查看答案和解析>>

同步练习册答案