精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1求函数的单调区间

2若关于的不等式上有解求实数的取值范围

【答案】1单调递增区间是单调递减区间为2

【解析】

试题分析:1时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;2对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围

试题解析:1

所以

所以函数的单调递减区间为

2要使上有解只要在区间上的最小值小于等于0

因为

在区间上单调递增

上的最小值为

解得

在区间上单调递减上单调递增

上最小值为

解得

综上可知,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)求证:曲线在点处的切线过定点;

2)若在区间上的极大值,但不是最大值,求实数的取值范围;

3)求证:对任意给定的正数,总存在,使得上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

为定义在上的“局部奇函数”;

曲线轴交于不同的两点;

为假命题, 为真命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆上一点与椭圆右焦点的连线垂直于

(1)求椭圆的方程;

(2)与抛物线相切于第一象限的直线,与椭圆交于两点,与轴交于点,线段的垂直平分线与轴交于点,求直线斜率的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是某市环保局连续30天对空气质量指数的监测数据:

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(Ⅰ)完成下面的频率分布表;

(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中的值;

(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为参数),曲线上的点对应的参数以坐标原点为极点轴正半轴为极轴建立极坐标系的极坐标是直线过点且与曲线交于不同的两点

(1)求曲线的普通方程

(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数,若函数的图象与轴的两个相邻交点的距离为.

(1)求函数的单调区间;

(2)若时, ,求的值.

(3)若,且有且仅有一个实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

求分数在[120,130)内的频率,并补全这个频

率分布直方图;

统计方法中,同一组数据常用该组区间的中点

值作为代表,据此估计本次考试的平均分;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案