精英家教网 > 高中数学 > 题目详情

【题目】若函数exf(x)(e=2.71828…,是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数:

f(x)=(x>1) f(x)=x2 f(x)=cosx f(x)=2-x

中具有M性质的是__________.

【答案】①④

【解析】分析:根据函数的新定义,函数的单调性,逐一判断各个选项是否满足条件,从而得出结论.

详解:当时,函数,则,则函数单调递增,在上单调递减,与函数的单调性是相同的,所以具有M性质;

时,函数在定义域上没有单调性,所以函数不具有M性质;

时,函数在定义域上没有单调性,所以函数不具有M性质;

时,函数在定义域上有相同的单调性,所以函数具有M性质,综上可知,具有M性质的为①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1= , b2= , 对任意n∈N* , 都有bn+12=bnbn+2
求数列{an}、{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C ,直线l

(Ⅰ)求直线l所过定点A的坐标;

(Ⅱ)求直线l被圆C所截得的弦长最短时m的值及最短弦长;

(Ⅲ)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求的值;

(2)证明:是区间上的减函数;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=(2x-x2)ex

(-)是f(x)的单调递减区间;

f(-)是f(x)的极小值,f()是f(x)的极大值;

f(x)没有最大值,也没有最小值;

f(x)有最大值,没有最小值.

其中判断正确的是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(  )
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

同步练习册答案