精英家教网 > 高中数学 > 题目详情

如图,正方形ABCD所在平面与平面四边形ABEF所在的平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:P M∥平面BCE;
(3)求二面角F-BD-A的余弦值.

解:(1)∵正方形ABCD所在平面与平面四边形ABEF所在的平面互相垂直,
∴BC⊥平面ABEF,
又由EF?平面ABEF
∴BC⊥EF
又∵△ABE是等腰直角三角形,FA=FE,∠AEF=45°
∴∠FEB=90°,即FE⊥EB
又∵EB∩BC=B
∴EF⊥平面BCE;
(2)以A为坐标原点,AD,AB,AE方向分别为X,Y,Z轴正方向,建立空间坐标系,
令正方形ABCD的边长为2,则A(0,0,0),B(0,2,0),C(2,2,0),D(2,0,0),E(0,0,2),F(0,-1,1),P(2,1,0),M(0,0,1)
=(-2,-1,1),=(0,-1,-1)为平面BCE的一个法向量,
=0
∴P M∥平面BCE
(3)设平面FBD的一个法向量
,即
仅x=1,则平面FBD法向量
又∵=(0,0,2)为平面ABCD的一个法向量
令二面角F-BD-A的平面角为θ

分析:(1)由已知中正方形ABCD所在平面与平面四边形ABEF所在的平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.我们易根据面面垂直的性质,线面垂直的性质及等腰三角形的性质,得到BC⊥EF,FE⊥EB,结合线面垂直的判定定理得到EF⊥平面BCE;
(2)以A为坐标原点,AD,AB,AE方向分别为X,Y,Z轴正方向,建立空间坐标系,分别求出直线P M的方向向量及平面BCE的法向量,根据两个向量数量积为0,得到两个向量相互垂直,进而得到P M∥平面BCE;
(3)分别求出平面BDF及平面ABCD的法向量,代入向量夹角公式,即可得到二面角F-BD-A的余弦值.
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,其中(1)的关键是,熟练掌握面面垂直,线面垂直,线线垂直之间的相互转化,(2),(3)的关键是建立空间坐标系,将线面平行及二面角问题转化为向量的夹角问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图把正方形ABCD沿对角线BD折成直二面角,对于下面结论:
①AC⊥BD;
②CD⊥平面ABC;
③AB与BC成60°角;
④AB与平面BCD成45°角.
则其中正确的结论的序号为
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
),则MN的长的最小值为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求证:AB⊥平面ADE;
(II)(理)在线段BE上存在点M,使得直线AM与平面EAD所成角的正弦值为
6
3
,试确定点M的位置.
(文)若AD=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4

查看答案和解析>>

同步练习册答案