分析 利用两角和的正切公式求得tanα=tan[(α-β)+β]的值,可得α的值.
解答 解:∵α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,
∴tanα=tan[(α-β)+β]=$\frac{tan(α-β)+tanβ}{1-tan(α-β)•tanβ}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}•\frac{1}{3}}$=1,
∴α=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评 本题主要考查两角和的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | {x|x≤3} | B. | {x|2<x<3} | C. | {x|-1≤x≤3} | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0<x<2} | B. | {x|1<x<2} | C. | {x|x>0} | D. | {x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1+$\frac{π}{3}$ | B. | 1+$\frac{π}{6}$ | C. | $\frac{2}{3}$+$\frac{π}{3}$ | D. | $\frac{2}{3}$+$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | h=8cost+10 | B. | h=-8cos$\frac{π}{3}$t+10 | C. | h=-8sin$\frac{π}{6}$t+10 | D. | h=-8cos$\frac{π}{6}$t+10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{1}{2})$ | B. | $(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$ | C. | $(\frac{1}{2},+∞)$ | D. | $(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com