精英家教网 > 高中数学 > 题目详情
13.已知α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则α的值是$\frac{π}{4}$.

分析 利用两角和的正切公式求得tanα=tan[(α-β)+β]的值,可得α的值.

解答 解:∵α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,
∴tanα=tan[(α-β)+β]=$\frac{tan(α-β)+tanβ}{1-tan(α-β)•tanβ}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}•\frac{1}{3}}$=1,
∴α=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},则M∪N=(  )
A.{x|x≤3}B.{x|2<x<3}C.{x|-1≤x≤3}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.二项式${({{x^2}-\frac{1}{x}})^6}$的展开式中(  )
A.不含x9B.含x4C.含x2D.不含x项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且离心率是$\frac{1}{2}$,过坐标原点O的任一直线交椭圆C于M、N两点,且|NF2|+|MF2|=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C交于不同的两点A、B,且与圆x2+y2=1相切,
(i)求证:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z1=1-i,z2=1+i,其中i是虚数单位,则$\frac{{z}_{1}}{{z}_{2}}$的模为(  )
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(  )
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x2-lnx的递增区间是(  )
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

同步练习册答案