【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求,的极坐标方程;
(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.
【答案】(1) ρ=2cosθ;ρ=6cosθ(2) 当α=±时,S△ABC2取得最大值3
【解析】试题分析:(1)根据极坐标和直角坐标的转化公式得到两个曲线的极坐标方程;(2)S△ABC2=×d×|AB|,根据极径的概念得到|AB|=4cosα,进而求得最值.
解析:
(Ⅰ)由x=ρcosθ,y=ρsinθ可得,
C1:ρ2cos2θ+ρ2sin2θ-2ρcosθ+1=1,所以ρ=2cosθ;
C2:ρ2cos2θ+ρ2sin2θ-6ρcosθ+9=9,所以ρ=6cosθ.
(Ⅱ)依题意得|AB|=6cosα-2cosα=4cosα,-<α<,
C2(3,0)到直线AB的距离d=3|sinα|,
所以S△ABC2=×d×|AB|=3|sin2α|,
故当α=±时,S△ABC2取得最大值3.
科目:高中数学 来源: 题型:
【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.
(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.
(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)在极坐标系下,设曲线与射线和射线分别交于,两点,求的面积;
(2)在直角坐标系下,直线的参数方程为(为参数),直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线a与平面所成角的为30o,直线b在平面内,且与b异面,若直线a与直线b所成的角为,则( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018甘肃兰州市高三一诊】已知圆: ,过且与圆相切的动圆圆心为.
(I)求点的轨迹的方程;
(II)设过点的直线交曲线于, 两点,过点的直线交曲线于, 两点,且,垂足为(, , , 为不同的四个点).
①设,证明: ;
②求四边形的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com