【题目】已知定义域为的函数是奇函数.
(1)求的值;
(2)猜测的单调性,并用定义证明;
(3)若对任意,不等式恒成立,求实数的取值范围.
【答案】(1);(2)减函数;(3)
【解析】试题分析:根据函数为奇函数,利用奇函数的定义和函数定义域中含有x=0,f(0)=0,列方程组解出参数a,b,写出函数的解析式;分离常数容易猜出函数为减函数,用定义法证明函数的单调性,步骤为①取值,②作差,③变形,④断号,最后给出单调性结论.恒成立问题,采用分离参数,求最值,借助“极值原理”求出参数的范围
试题解析:
(1)由,可得,检验:当时, ,定义域为,对任意,都有,所以为奇函数.
(2)在单调递减. 以下用定义证明:设,则,因为函数在为增函数,且,所以.又因为,所以,所以,所以在单调递减.
(3)由可得,因为在单调递减,所以任意,都有恒成立,若,则,符合题意,所以;若,则,令,则,若,则,令,则,综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合RP;
(2)若PQ,求实数m的取值范围;
(3)若P∩Q=Q,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若恒成立,求的取值范围;
(Ⅱ)设,,(为自然对数的底数).是否存在常数,使恒成立,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时, 。
(1)求证: ,且当 时,有 ;
(2)判断 在R上的单调性;
(3)设集合A=,B=,若A∩B=,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·
乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com