精英家教网 > 高中数学 > 题目详情

【题目】住在同一城市的甲、乙两位合伙人,约定在当天下午420-500间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________

【答案】

【解析】

设甲乙两人第分钟和第分钟到达,得到,再得到甲乙两人约好当其中一人先到后最多等对方10分钟,即,利用面积比的几何概型,即可求解.

因为乙两位合伙人,约定在当天下午420-500间在某个咖啡馆相见商谈合作事宜,

设甲乙两人各在第分钟和第分钟到达,

则样本空间为,作出图象,如图所示,

则正方形的面积为

又由甲乙两人约好当其中一人先到后最多等对方10分钟,即

可得阴影部分的面积为

所以由几何概型的概率计算公式,可得概率为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),过点作斜率为的直线与圆交于两点.

(1)若圆心到直线的距离为,求的值;

(2)求线段中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,椭圆的右焦点,直线过椭圆的右顶点,与椭圆交于另一点,与轴交于点.

1)求椭圆的方程;

2)若为弦的中点,是否存在定点,使得恒成立?若存在,求出点的坐标,若不存在,请说明理由;

3)若,交椭圆于点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=lnx+ax2-xx0aR).

(Ⅰ)讨论函数fx)的单调性;

(Ⅱ)求证:当a≤0时,曲线y=fx)上任意一点处的切线与该曲线只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列几个命题:①若,则;②,则互为相反数的否命题;③的逆命题;④,则互为倒数的逆否命题. 其中真命题的序号__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB分别是双曲线的左右顶点,设过的直线PAPB与双曲线分别交于点MN,直线MNx轴于点Q,过Q的直线交双曲线的于ST两点,且,则的面积( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(xa2+y224a0)及直线lxy+30.当直线l被圆C截得的弦长为时,求

(Ⅰ)a的值;

(Ⅱ)求过点(35)并与圆C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面.

(1)证明:平面

(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y24x+30,过原点的直线l与圆C有公共点.

1)求直线l斜率k的取值范围;

2)已知O为坐标原点,点P为圆C上的任意一点,求线段OP的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案