精英家教网 > 高中数学 > 题目详情

已知正项数列{an}的前n项和为Sn,且an+数学公式=2Sn,n∈N*
(Ⅰ)求证:数列{Sn2}是等差数列;
(Ⅱ)求解关于n的不等式an+1(Sn-1+Sn)>4n-8;
(Ⅲ)记数列bn=2Sn3,Tn=数学公式…+数学公式,证明:1-数学公式<Tn数学公式

解:(Ⅰ)∵an+=2Sn,∴an2+1=2anSn.当n≥2时,(Sn-Sn-12+1=2(Sn-Sn-1)Sn
化简得Sn2-Sn-12=1.由a1+=2a1,得a12=S12
∴数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,又由an+1(Sn-1+Sn)>4n-8,得Sn+12-Sn2>4n-8,即1>4n-8,∴
又n∈N*,∴不等式的解集为{1,2}
(Ⅲ)当n≥2时,∵,∴
,∴
∴1-<Tn
分析:(Ⅰ)利用an=Sn-Sn-1,化简得Sn2-Sn-12=1.从而数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,从而Sn+12-Sn2>4n-8,即1>4n-8,故可解;
(Ⅲ)∵可以证明,同理可证1-<Tn
点评:本题主要考查等差数列的证明,解不等式,要注意数列的特殊性,对于不等式的证明,利用了放缩法,有一定的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案