精英家教网 > 高中数学 > 题目详情

已知函数 

(1)利用“五点法”画出该函数在长度为一个周期上的简图;

列表;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

作图:

(2)说明该函数的图像可由的图像经过怎样的变换得到.

 

【答案】

(1)采用列表、描点、连线的方法作图即可,图像见解析

(2)

【解析】

试题分析:(1)列表:

0

0

2

0

-2

0

作图:                            

                 6分

(2)                              8分

                                             10分

                                            12分

考点:本小题主要考查五点作图法作函数的图象和三角函数的图像变换.

点评:运用五点作图法时,要注意五个关键点的选取;进行三角函数图像变换时,要注意左右平移时平移的单位.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+bx2+cx在x=α与x=β处有两上不同的极值点,设f(x)在点(-1,f(-1))处切线为l1,其斜率为k1;在点
(1,f(1))利的切线为l2,其斜率为k2
(1)若l1l2,|α-β|=
10
3
,求bc.

(2)若α=-
1
2
,β∈(0,1)
,求k1k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.

(1)求函数y=g(x)的解析式及定义域M;

(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在一个正的常数a,使得定义域D内的任意两个不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,则称函数y=f(x)为D上的利普希茨I类函数.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.

(1)求函数y=g(x)的解析式及定义域M;

(2)证明:函数y=g(x)为M上的利普希茨I类函数;

(3)若A、B为C2上两点,求证:直线AB与直线y=x相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在一个正的常数a,使得定义域D内的任意两个不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,则称函数y=f(x)为D上的利普希茨I类函数.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.

(1)求函数y=g(x)的解析式及定义域M;

(2)证明:函数y=g(x)为M上的利普希茨I类函数;

(3)若A、B为C2上两点,求证:直线AB与直线y=x相交.

查看答案和解析>>

科目:高中数学 来源:2010年河北省正定中学高三下学期第三次模拟考试数学(文) 题型:解答题

(本小题满分12分)已知函数处有两上不同的极值点,设在点处切线为其斜率为;在点利的切线为,其斜率为
(1)若 的值
(2)若,求的取值范围。

查看答案和解析>>

同步练习册答案