精英家教网 > 高中数学 > 题目详情
如图,空间四边形S-ABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(    )
A.90°         B.60°         C.45°         D.30°
C
中点,连接。因为分别是中点,所以,同理可得,所以是异面直线所成角。因为空间四边形各边即对角线长都相等,而点中点,所以,从而有,所以。因为,所以。而,则,故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(1)求证:AB1// 面BDC1
(2)求二面角C1—BD—C的余弦值;
(3)在侧棱AA­1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成的角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图四棱锥的底面是正方形,,点E在棱PB上,O为AC与BD的交点。
(1)求证:平面
2)当E为PB中点时,求证://平面PDA,//平面PDC。
(3)当且E为PB的中点时,求与平面所成的角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,分别为的中点。
(I)证明:ED为异面直线的公垂线;
(II)设求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
在三棱锥中,
(1)证明:
(2)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、(本小题满分13分).在正方体ABCD-A1B1C1D1中,M、N、P分别是CC1、B1C1、C1D1的中点.(温馨提示:该题要在答题卡上作图,否则扣分)。
(1) 求异面直线PN、AC所成角;  (2) 求证:平面MNP∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的直径SC= 4,A,B是该球球面上的两点,,则棱锥S-ABC的体积为  (   )
A.B.C.D.19

查看答案和解析>>

同步练习册答案