【题目】已知椭圆:()和圆:,分别是椭圆的左、右两焦点,过且倾斜角为()的动直线交椭圆于两点,交圆于两点(如图所示,点在轴上方).当时,弦的长为.
(1)求圆与椭圆的方程;
(2)若依次成等差数列,求直线的方程.
科目:高中数学 来源: 题型:
【题目】将下列问题的解答过程补充完整.
依次计算数列,,,,…的前四项的值,由此猜测的有限项的表达式,并用数学归纳法加以证明.
解:计算 ,
,
① ,
② ,
由此猜想 ③ .(*)
下面用数学归纳法证明这一猜想.
(i)当时,左边,右边,所以等式成立.
(ⅱ)假设当时,等式成立,即
④ .
那么,当时,
⑤
⑥
⑦ .
等式也成立.
根据(i)和(ⅱ)可以断定,(*)式对任何都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地某高中2018年的高考考生人数是2015年高考考生人数的1.5倍.为了更好地对比该校考生的升学情况,统计了该校2015和2018年高考情况,得到如下饼图:
2018年与2015年比较,下列结论正确的是( )
A. 一本达线人数减少
B. 二本达线人数增加了0.5倍
C. 艺体达线人数相同
D. 不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校数学学院为了对2018年录取的大一新生有针对性地进行教学.从大一新生中随机抽取40名,对他们在2018年高考的数学成绩进行调查,统计发现40名新生的数学分数分布在内.当时,其频率.
(1)求的值;
(2)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该区间的中点值作代表).
(3)若高考数学分数不低于120分的为优秀,低于120分的为不优秀,则按高考成绩优秀与否从这40名新生中用分层抽样的方法抽取4名学生,再从这4名学生中随机抽取2名,求这2名学生的高考成绩均为优秀的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为.如果,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为 ,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为50元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求的分布列及数学期望(保留一位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若曲线在处的切线方程为,求实数的值;
(2)设,若对任意两个不等的正数,,都有恒成立,求实数的取值范围;
(3)若在上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒成立.则实数m( )
A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com