精英家教网 > 高中数学 > 题目详情

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

【答案】(Ⅰ)详见解析;(Ⅱ) .

【解析】试题分析:

Ⅰ)由函数的解析式可得 ,当时, 上单调递增;当时,由导函数的符号可知单调递减;在单调递增.

Ⅱ)构造函数,问题转化为上恒成立,求导有,注意到.分类讨论:当时,不满足题意. 时, 上单调递增;所以,满足题意.

则实数的取值范围是.

试题解析:

时, .上单调递增;

时,由,得.

时, ;当时, .

所以单调递减;在单调递增.

Ⅱ)令

问题转化为上恒成立,

,注意到.

时,

因为,所以

所以存在,使

时, 递减,

所以,不满足题意.

时,

时,

所以 上单调递增;所以,满足题意.

综上所述: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,anan+1=2Sn , 设bn= ,若存在正整数p,q(p<q),使得b1 , bp , bq成等差数列,则p+q=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,内角对边的边长分别是,已知.()若的面积等于,求)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图长方体中,分别为棱的中点

(1)求证:平面平面

(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1的所有棱长都为2,点P,Q分别为棱CC1 , BC的中点,则四面体A1﹣B1PQ的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年高考成绩揭晓,某高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;

(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?

(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.

参考公式:(其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延长线上,α为锐角).圆E与AD,BC都相切,且其半径长为100﹣80sinα米.EO是垂直于AB的一个立柱,则当sinα的值设计为多少时,立柱EO最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间上单调递减,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·重庆高二检测)如图三棱柱ABC-A1B1C1侧棱垂直底面ACB=90°AC=BC=AA1D是棱AA1的中点.

(1)证明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱为两部分求这两部分体积的比.

查看答案和解析>>

同步练习册答案