精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率为$\frac{\sqrt{2}}{2}$,椭圆C与直线l:y=kx+m相交于E、F两不同点,且直线l与圆O:x2+y2=$\frac{2}{3}$相切于点W(O为坐标原点).
(Ⅰ)求椭圆C的方程并证明:OE⊥OF;
(Ⅱ)设λ=$\frac{|EW|}{|FW|}$,求实数λ的取值范围.

分析 (Ⅰ)由题意得2b=2,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,从而求出椭圆C的方程;
由直线l与圆O相切化简可得m2=$\frac{2}{3}$(1+k2);由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$可得(1+2k2)x2+4kmx+2m2-2=0,从而结合韦达定理及向量的数量积化简可得$\overrightarrow{OE}$•$\overrightarrow{OF}$=0,从而证明.
(Ⅱ)由直线l与圆O相切于W,且$\frac{{x}_{1}^{2}}{2}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{2}$+${y}_{2}^{2}$=1可得λ=$\frac{|EW|}{|FW|}$=$\frac{\sqrt{|OE{|}^{2}-{r}^{2}}}{\sqrt{|OF{|}^{2}-{r}^{2}}}$=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$,再由x1x2+y1y2=0可得${x}_{2}^{2}$=$\frac{4-2{x}_{1}^{2}}{2+3{x}_{1}^{2}}$;从而化简λ=$\frac{2+3{x}_{1}^{2}}{4}$,从而求实数λ的取值范围.

解答 解:(Ⅰ)由题意得,
2b=2,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2
解得,a2=2,b2=1;
故椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1;
∵直线l与圆O相切,
∴圆x2+y2=$\frac{2}{3}$的圆心到直线l的距离d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{\frac{2}{3}}$,
∴m2=$\frac{2}{3}$(1+k2);
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$可得,
(1+2k2)x2+4kmx+2m2-2=0,
设E(x1,y1),F(x2,y2);
则x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
∴$\overrightarrow{OE}$•$\overrightarrow{OF}$=x1x2+y1y2
=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2)$\frac{2{m}^{2}-2}{1+2{k}^{2}}$-km$\frac{4km}{1+2{k}^{2}}$+m2
=$\frac{3{m}^{2}-2{k}^{2}-2}{1+2{k}^{2}}$=$\frac{2(1+{{k}^{2}}_{\;})-2{k}^{2}-2}{1+2{k}^{2}}$=0,
∴OE⊥OF.
(Ⅱ)∵直线l与圆O相切于W,$\frac{{x}_{1}^{2}}{2}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{2}$+${y}_{2}^{2}$=1,

∴λ=$\frac{|EW|}{|FW|}$=$\frac{\sqrt{|OE{|}^{2}-{r}^{2}}}{\sqrt{|OF{|}^{2}-{r}^{2}}}$=$\frac{\sqrt{{x}_{1}^{2}+{y}_{1}^{2}-\frac{2}{3}}}{\sqrt{{x}_{2}^{2}+{y}_{2}^{2}-\frac{2}{3}}}$=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$,
由(Ⅰ)知x1x2+y1y2=0,
∴x1x2=-y1y2,即${x}_{1}^{2}$${x}_{2}^{2}$=${y}_{1}^{2}$${y}_{2}^{2}$,
从而${x}_{1}^{2}$${x}_{2}^{2}$=(1-$\frac{{x}_{1}^{2}}{2}$)(1-$\frac{{x}_{2}^{2}}{2}$),
即${x}_{2}^{2}$=$\frac{4-2{x}_{1}^{2}}{2+3{x}_{1}^{2}}$;
∴λ=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$=$\frac{2+3{x}_{1}^{2}}{4}$,
∵-$\sqrt{2}$≤${x}_{1}^{\;}$≤$\sqrt{2}$,
∴λ∈[$\frac{1}{2}$,2].

点评 本题考查了椭圆的标准方程的求法,利用平面向量的数量积证明垂直,韦达定理的应用,重点考查了学生的化简运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.甲、乙两人抢答竞赛题,甲答对的概率为$\frac{1}{5}$,乙答对的概率为$\frac{1}{4}$,则两人恰有一人答对的概率为(  )
A.$\frac{7}{20}$B.$\frac{12}{20}$C.$\frac{1}{20}$D.$\frac{2}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知,x,y∈R,则“|x+y|=|x|+|y|”是“xy>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某班有50名学生,一次数学考试的成绩ξ服从正态分布N(105,102),已知P(95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线y2=2x的内接△ABC的三条边所在直线与抛物线x2=2y均相切,已知点C(8,4),设A,B两点的纵坐标分别是a,b,则a+b=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足条件:$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ y≥2\end{array}\right.$,则目标函数z=2x+4y的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|0<x<5},B={x|x2-2x-3>0},则A∩B=(  )
A.(0,3)B.(3,5)C.(-1,0)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点F是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左焦点,点P为椭圆C上任意一点,点Q的坐标为(4,3),则|PQ|+|PF|的最大值为5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设X~N(-2,$\frac{1}{4}$),则X落在(-∞,-3.5]∪[-0.5,+∞)内的概率是(  )
A.95.4%B.99.7%C.4.6%D.0.3%

查看答案和解析>>

同步练习册答案