精英家教网 > 高中数学 > 题目详情
14.定义:如果一个数列的任意连续三项均能构成一个三角形的三边长,那么称此数列为“三角形”数列.已知数列{an}满足an=dn2(d>0).
(Ⅰ)试判断数列{an}是否是“三角形”数列,并说明理由;
(Ⅱ)在数列{bn}中,b1=1,前n项和Sn满足3Sn+1-3=2Sn
(1)证明:数列{bn}是“三角形”数列;
(2)设d=1,数列{$\frac{{{a}_{n}b}_{n}}{n}$}的前n项和为Tn,若不等式Tn+($\frac{2}{3}$)n•$\frac{a}{n}$-9<0对任意的n∈N*恒成立,求实数a的取值范围.

分析 (Ⅰ)通过an=dn2直接计算出前三项的值,利用a1+a2<a3即得结论;
(Ⅱ)(1)利用(3Sn+1-3)-(3Sn-3)=(2Sn)-(2Sn-1)(n≥2)可知$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{2}{3}$,进而bn>bn+1>bn+2,通过计算可知bn+1+bn+2>bn,进而可得结论;(2)通过bn=$(\frac{2}{3})^{n-1}$、an=n2可知$\frac{{{a}_{n}b}_{n}}{n}$=n$(\frac{2}{3})^{n-1}$,利用错位相减法可知Tn=9-3(n+3)$(\frac{2}{3})^{n}$,进而$(\frac{2}{3})^{n}$[$\frac{a}{n}$-3(n+3)]<0恒成立,问题转化为求3(n2+3n)的最小值,计算即得结论.

解答 (Ⅰ)结论:数列{an}不是“三角形”数列.
理由如下:
∵an=dn2(d>0),
∴a1=d,a2=4d,a3=9d,
∵a1+a2<a3
∴a1、a2、a3不能构成一个三角形的三边,
∴数列{an}不是“三角形”数列;
(Ⅱ)(1)证明:∵3Sn+1-3=2Sn
∴(3Sn+1-3)-(3Sn-3)=(2Sn)-(2Sn-1)(n≥2),
整理得:3bn+1=2bn,即$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{2}{3}$,
∵b1=1,
∴3(b1+b2)-3=2b1
∴b2=1-$\frac{1}{3}$b1=1-$\frac{1}{3}$=$\frac{2}{3}$,
∴$\frac{{b}_{2}}{{b}_{1}}$=$\frac{2}{3}$,
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{2}{3}$(n∈N*),
∴数列{bn}为单调递减数列,
即bn>bn+1>bn+2
又∵bn+1+bn+2-bn=$(\frac{2}{3})^{n}$+$(\frac{2}{3})^{n+1}$-$(\frac{2}{3})^{n-1}$
=$(\frac{2}{3})^{n-1}$×($\frac{4}{9}+\frac{2}{3}-1$)
=$(\frac{2}{3})^{n-1}$×$\frac{1}{9}$
>0,
即bn+1+bn+2>bn
∴bn+1、bn+2、bn能构成一个三角形的三边,
∴数列{bn}是“三角形”数列;
(2)解:由(1)知bn=$(\frac{2}{3})^{n-1}$,
∵d=1,an=dn2(d>0),
∴an=n2
∴$\frac{{{a}_{n}b}_{n}}{n}$=$\frac{{n}^{2}{b}_{n}}{n}$=nbn=n$(\frac{2}{3})^{n-1}$,
∴Tn=1$(\frac{2}{3})^{0}$+2$(\frac{2}{3})^{1}$+3$(\frac{2}{3})^{2}$+…+n$(\frac{2}{3})^{n-1}$,
∴$\frac{2}{3}$Tn=1$(\frac{2}{3})^{1}$+2$(\frac{2}{3})^{2}$+…+(n-1)$(\frac{2}{3})^{n-1}$+n$(\frac{2}{3})^{n}$,
∴$\frac{1}{3}$Tn=1+$(\frac{2}{3})^{1}$+$(\frac{2}{3})^{2}$+…+$(\frac{2}{3})^{n-1}$-n$(\frac{2}{3})^{n}$
=$\frac{1-(\frac{2}{3})^{n}}{1-\frac{2}{3}}$-n$(\frac{2}{3})^{n}$
=3[1-$(\frac{2}{3})^{n}$]-n$(\frac{2}{3})^{n}$,
∴Tn=9[1-$(\frac{2}{3})^{n}$]-3n$(\frac{2}{3})^{n}$=9-3(n+3)$(\frac{2}{3})^{n}$,
∵不等式Tn+($\frac{2}{3}$)n•$\frac{a}{n}$-9<0对任意的n∈N*恒成立,
∴$(\frac{2}{3})^{n}$[$\frac{a}{n}$-3(n+3)]<0恒成立,
∴a<3(n2+3n)min
∵n≥1,
∴3(n2+3n)min=12,
∴a<12.

点评 本题是一道关于数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,a1=2,q=2,则其通项公式为(  )
A.an=2n-1B.an=2nC.an=2n+1D.an=2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f′(x)是定义在R上的函数f(x)的导函数,x0∈R,设命题P:f′(x0)=0;命题Q:x=x0是函数f(x)的极值点,则P是Q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{lnx}{x}$(0<x<1),则下列不等式正确的是(  )
A.f2(x)<f(x2)<f(x)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f(x2)<f(x)<f2(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.关于数列3,9,…,2187,…,以下结论正确的是(  )
A.此数列不是等差数列,也不是等比数列
B.此数列可能是等差数列,也可能是等比数列
C.此数列可能是等差数列,但不是等比数列
D.此数列不是等差数列,但可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各数中,可能是六进制数的是(  )
A.66B.108C.732D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的不等式|x+a|-|x-3|+a<2015(a是常数)的解集是R,则实数a的取值范围是(-∞,1006).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化简$\sqrt{1+sin4}+\sqrt{1-sin4}$,得到(  )
A.-2sin2B.-2cos2C.2sin2D.2cos2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设p:ω=1,q:f(x)=sin($ωx+\frac{π}{3}$)(ω>0)的图象关于点(-$\frac{π}{3}$,0)对称,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案