精英家教网 > 高中数学 > 题目详情

若函数f(x)满足下列性质:

(1)定义域为R,值域为[1,+∞);

(2)图象关于x=2对称;

(3)对任意x1,x2∈(-∞,0),若x1<x2,都有f(x1)>f(x2)

请写出函数f(x)的一个解析式________(只要写出一个即可).

答案:
解析:

f(x)=(x-2)2+1;(f(x)=a(x-2)2+1(a>0)均可)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:
精英家教网
那么,不等式|f-1(x-1)|<2的解集是(  )
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:

那么,不等式|f-1(x-1)|<2的解集是


  1. A.
    {x|数学公式<x<4}
  2. B.
    {x|数学公式<x<3}
  3. C.
    {x|1<x<2}
  4. D.
    {x|1<x<5}

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:不等式(解析版) 题型:选择题

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:

那么,不等式|f-1(x-1)|<2的解集是( )
A.{x|<x<4}
B.{x|<x<3}
C.{x|1<x<2}
D.{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=f(x)满足下表:

x

(-∞,-1)

-1

(-1,0)

0

(0,1)

1

(1,+∞)

y′

-

0

+

0

-

0

+

y

极小

极大

极小

写出一个满足上表的函数___________.

查看答案和解析>>

同步练习册答案