精英家教网 > 高中数学 > 题目详情

【题目】通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:

总计

爱好

40

不爱好

25

总计

45

100


(1)将题中的2×2列联表补充完整;
(2)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
附:K2=

p(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828


(3)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.

【答案】
(1)解: 2×2列联表如下:

总计

爱好

40

20

60

不爱好

15

25

40

总计

55

45

100


(2)解:K2= ≈8.25>6.635,

∴99%的把握认为断爱好该项运动与性别有关;


(3)解:由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,

则P(X=0)= = ,P(X=1)= = ,P(X=2)= =

X的分布列为

X

0

1

2

P

E(X)=0 ×+1× +2× =1


【解析】(1)根据2×2列联表数据共享将表中空白部分数据补充完整.(2)求出K2 , 与临界值比较,即可得出结论;(3)由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线过点,其参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,有f(x)>0.
①求证:f( )=f(m)﹣f(n);
②求证:f(x)在(0,+∞)上是增函数;
③比较f( )与 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R.
(1)当a=1时,解不等式f(x)≥5;
(2)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.

(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(2)已知EF=FB= AC=2 ,AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆C的方程为 (θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线l的极坐标方程为ρcosθ+ρsinθ=m(m∈R).
(1)当m=3时,判断直线l与C的位置关系;
(2)当C上有且只有一点到直线l的距离等于 时,求C上到直线l距离为2 的点的坐标.

查看答案和解析>>

同步练习册答案