精英家教网 > 高中数学 > 题目详情
6.在样本频率分布直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形的面积和的$\frac{2}{5}$,且样本容量为280,则中间一组的频数为80.

分析 根据频率分布直方图中频率和为1,求出中间小长方形的频率,即可求出对应的频数.

解答 解:根据频率和为1,设中间一个长方形的面积为a,
则其他8个小长方形的面积和为$\frac{5}{2}$a,
∴a+$\frac{5}{2}$a=1,
解得a=$\frac{2}{7}$,
∴中间一组的频数为280×$\frac{2}{7}$=80.
故答案为:80.

点评 本题考查了频率分布直方图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.圆心为(1,1)且在直线x+y=4上截得的弦长为2$\sqrt{2}$的圆的方程是(  )
A.(x-1)2+(y-1)2=10B.(x-1)2+(y-1)2=20C.(x-1)2+(y-1)2=2D.(x-1)2+(y-1)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα+cosα=-$\frac{1}{3}$,其中0<α<π,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.通过计算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
将以上各等式两边分别相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
类比上述求法,请你求出13+23+33+…+n3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.2014年小明以优异的成绩研究生毕业,并获得一份待遇优厚的工作.从2015年起,每年元月在银行存入5万元,打算连续存十年,银行年利率为r(按复利计算),到2025年元月取出的本利之和是$\frac{5(1{+r)}^{11}-5-5r}{r}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)证明:数列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差数列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有两个函数f(x)=asin(kx+$\frac{π}{3}$),g(x)=bcos(2kx-$\frac{π}{3}$)(k>0),它们的周期之和为$\frac{3π}{2}$,且f($\frac{π}{2}$)=g($\frac{π}{2}$),f($\frac{π}{4}$)=-$\sqrt{3}$•g($\frac{π}{4}$)+1,求k,a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={x|a≤x≤a+2}与B={x|x<1或x>4},且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}中,a1=3,a2=5,且对于任意的大于2的正整数n,有an=an-1-an-2则a11=-5.

查看答案和解析>>

同步练习册答案