精英家教网 > 高中数学 > 题目详情

【题目】某品牌豆腐食品是经过A,B,C三道工序加工而成的,A,B,C工序的产品合格率分别为,,.已知每道工序的加工都相互独立,三道工序加工的产品都合格时产品为一等品;恰有两次合格为二等品;其他的为废品,不进入市场.

(1)生产一袋豆腐食品,求产品为废品的概率;

(2)生产一袋豆腐食品,X为三道加工工序中产品合格的工序数,X的分布列和数学期望.

【答案】(1);(2)见解析

【解析】

试题分析:(1)产品为废品包含三道工序加工的产品都不合格,三道工序加工的产品有一道工序合格,其他两道工序不合格,而三道工序加工的产品有一道工序合格,其他两道工序不合格又包含,三道工序加工的产品有第一道工序合格,其他两道工序不合格,三道工序加工的产品有第二道工序合格,其他两道工序不合格,三道工序加工的产品有第三道工序合格,其他两道工序不合格,显然彼此互斥,有互斥事件与独立事件的概率求法,即可求出;(2)设为三道加工工序中产品合格的工序数,求的分布列和数学期望,由题意可知,三道加工工序中产品合格的工序数为,分别求出概率,即得分布列,从而得数学期望.

试题解析:(1)产品为废品的概率为:

6

2)由题意可得

9

得到ξ的分布列如下:


0

1

2

3






12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方
程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两个投资项目的利润率分别为随机变量X1X2,根据市场分析,X1X2的分布列分别为

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)AB两个项目上各投资100万元,Y1Y2分别表示投资项目AB所获得的利润,求方差V(Y1)V(Y2)

(2)x(0≤x≤100)万元投资A项目,100x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知横梁的强度和它的矩形横断面的长的平方与宽的乘积成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的长和宽分别为 ( )

A. d, d B. d, d

C. d, d D. d, d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.R(x)(单位:万元)为销售收入,根据市场调查知R(x)= 其中x(单位:万件)是年产量.

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.

(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①线性回归方程 至少经过点(x1,y1),(x2,y2),…,(xn ,yn)中的一个点;

②若变量之间的相关系数为 ,则变量之间的负相关很强;

③在回归分析中,相关指数 为0.80的模型比相关指数为0.98的模型拟合的效果要好;

④在回归直线中,变量时,变量的值一定是-7。

其中假命题的个数是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,若一天中从甲地去乙地的旅客人数不超过900的概率为p0,p0的值为 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

同步练习册答案