精英家教网 > 高中数学 > 题目详情

【题目】设函数

Ⅰ)当时,求函数的单调区间;

Ⅱ)当时,求函数上的最大值M

【答案】(Ⅰ)单调增区间为,单调减区间为(Ⅱ) .

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,ih根据导函数符号确定单调区间,2先求导数,再求导函数零点,讨论零点与k大小,根据导函数符号确定最大值取法:最大值为.最后利用导数比较大小,进而确定最大值M

试题解析:Ⅰ)当时,

,解得

,解得

,解得

∴函数的单调增区间为

单调减区间为

2)因为

,解得

因为

上是减函数,

,即

x的变化情况如下表:

0

极小值

∴函数[0k]上的最大值为

因为

,则

对任意的 的图象恒在的图象的下方,

,即

∴函数上为减函数,

,即

∴函数的最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.

(1)求椭圆的标准方程;

(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数.

(1)求函数的单调区间;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村计划建造一个室内面积为800m2的矩形蔬菜温室在室内沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大最大种植面积是多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数的零点个数;

(2)证明:当,函数有最小值,设的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在,使上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,且函数的图象是函数图象的一条切线,求实数的值;

(2)若不等式对任意恒成立,求实数的取值范围;

(3)若对任意实数,函数上总有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案