A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}$π | D. | $\frac{5}{6}$π |
分析 根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:将函数f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)的图象向右平移φ(0<φ<π)个单位长度后,
得到函数g(x)=sin[2(x-φ)+θ]=sin(2x-2φ+θ)的图象,
由于f(x),g(x)的图象都经过点P(0,$\frac{\sqrt{3}}{2}$),∴sinθ=$\frac{\sqrt{3}}{2}$,sin(-2φ+θ)=$\frac{\sqrt{3}}{2}$,
∴θ=$\frac{π}{3}$,-2φ+θ=-$\frac{4π}{3}$,∴φ=$\frac{5π}{6}$,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈Z,x2+2x-1≥0 | B. | ?x∈Z,使x2+2x-1>0 | ||
C. | ?x∈Z,x2+2x+1>0 | D. | ?x∈Z,使x2+2x-1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com