精英家教网 > 高中数学 > 题目详情

【题目】已知 表示两条不同的直线, 表示三个不同的平面,给出下列四个命题:

,则

,则

,则

,则

其中正确命题的序号为( )

A. ①② B. ②③ C. ③④ D. ②④

【答案】C

【解析】 ,则可以垂直,也可以相交不垂直,故不正确;

相交、平行或异面,故②不正确;正确; 可知与 共线的向量分别是的法向量,所以所成二面角的平面为直角 ,故正确故选C.

【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下

方式

实施地点

大雨

中雨

小雨

模拟实验次数

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:

1)求甲、乙、丙三地都恰为中雨的概率;

2考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记甲、乙、丙三地中缓解旱情的个数为随机变量,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性,并证明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题
①奇函数的图象一定通过原点
②函数y= 是偶函数,但不是奇函数
③函数f(x)=ax1+3的图象一定过定点P,则P点的坐标是(1,4)
④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)
⑤若函数f(x)= 在R上的增函数,则实数a的取值范围为[4,8)
其中正确的命题序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11 ,其中nN*

1,求证:数列{bn}是等差数列,并求出{an}的通项公式.

2,数列{cncn+2}的前n项和为Tn是否存在正整数m,使得对于nN*,恒成立?若存在,求出m的最小值;若不存在,请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 .直线与抛物线交于点两点,与圆切于点.

(1)当切点的坐标为时,求直线及圆的方程;

(2)当时,证明: 是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3
(1)求f(x)的定义域.
(2)讨论f(x)的奇偶性.

查看答案和解析>>

同步练习册答案