精英家教网 > 高中数学 > 题目详情
14.设命题p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;命题q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在x轴上的椭圆,若p∧q是真命题,则(  )
A.m>$\frac{2}{3}$B.m<-2C.1<m<2D.$\frac{2}{3}$<m<1

分析 根据双曲线和椭圆的方程建立不等式关系分别求出对应的等价条件,结合复合命题的真假关系进行求解即可.

解答 解:若方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线,则(1-m)(m+2)<0,
即(m-1)(m+2)>0,得m>1或m<-2,
若$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在x轴上的椭圆,
则$\left\{\begin{array}{l}{2m>2-m}\\{2-m>0}\end{array}\right.$,即$\left\{\begin{array}{l}{m>\frac{2}{3}}\\{m<2}\end{array}\right.$,即$\frac{2}{3}$<m<2,
若p∧q是真命题,则p,q都是真命题,
则$\left\{\begin{array}{l}{m>1或m<-2}\\{\frac{2}{3}<m<2}\end{array}\right.$,得1<m<2,
故选:C

点评 本题主要考查复合命题的真假应用,根据双曲线和椭圆的方程求出等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$$+\sqrt{3}$cos$\frac{x}{2}$(x∈R);
(1)求该函数最大值以及取得最大值时的x的取值;
(2)直线l倾斜角为θ,且f(θ)=2,l与坐标轴围成的三角形的面积为$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设焦点F1(-c,0),F2(c,0)是平面内两个定点,|PF1|•|PF2|=a2(a是定长),得出卡西尼卵形线的相关结论:①既是轴对称图形也是中心对称图形;②若a=c,则曲线过原点;③若0<a<c,则曲线不存在;④若0<c<a,则a2-c2≤x2+y2≤a2+c2.其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某高校安排5名大学生到4个单位实习,每名大学生去一个单位,每个单位至少安排一名大学生,则不同的安排方法的种数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}、{bn}满足a1=-1,b1=1,an+1=$\frac{{a}_{n}}{1-4{b}_{n}^{2}}$,bn+1=an+1bn,点Pn的坐标为(an,bn),且点P1、P2在直线l上.
(1)求直线l的方程;
(2)用数学归纳法证明:对任意n∈N*,点Pn(an,bn)在直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知AB是半圆O的直径,O是半圆圆心,AB=8,M、N、P是将半圆圆周四等分的三个分点.
(1)从A、B、M、N、P这5个点中任取3个点,求这3个点组成等腰三角形的概率;
(2)在半圆内任取一点S,求△SOB的面积大于4$\sqrt{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[0,5]之间随机取一个数使1<log2(x-1)≤2的成立的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案