精英家教网 > 高中数学 > 题目详情
已知实数x,y满足不等式组
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目标函数z=y-ax取得最大值时的唯一最优解是(1,3),则实数a的取值范围为(  )
A、(-∞,-1)
B、(0,1)
C、[1,+∞)
D、(1,+∞)
考点:简单线性规划的应用
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,将z=y-ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由几何意义可得.
解答: 解:由题意作出其平面区域,

将z=y-ax化为y=ax+z,z相当于直线y=ax+z的纵截距,
则由图可知,若使目标函数z=y-ax取得最大值时的唯一最优解是B(1,3),
则a>1,
故选D.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α∈(
π
4
π
2
)
,且sinα,cosα为方程25x2-35x+12=0的两根,则tan
α
2
的值为(  )
A、3
B、
1
3
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-bx2+cx+d,设曲线y=f(x)过点(3,0),且在点(3,0)处的切线的斜率等于4,y=f′(x)为f(x)的导函数,满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
,m>0,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=f′(x)+(2x+1)t,若h(x)<4对t∈[0,1]恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是长轴在x轴上的椭圆
x2
a2
+
y2
b2
=1上的点F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF2|的最大值与最小值之差一定是(  )
A、1
B、a2
C、b2
D、c2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sin2x-
3
cos2x+
3
sinx

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求使得不等式f(x)≤-2成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-2x
2x+1+a
是奇函数.
(1)求实数a,b的值;  
(2)判断并证明f(x)在(-∞,+∞)上的单调性;
(3)若对任意实数t∈R,不等式f(kt2-kt)+f(2-kt)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右分别为F1,F2,点P在双曲线的右支上,且|PF1|=2015|PF2|,则此双曲线的离心率e的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=b+2,b=c+2,且最大角是120°,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=π2,则y′=(  )
A、2π
B、π2
C、0
D、以上都不是

查看答案和解析>>

同步练习册答案