精英家教网 > 高中数学 > 题目详情

【题目】设A1、A2为椭圆 的左右顶点,若在椭圆上存在异于A1、A2的点P,使得 ,其中O为坐标原点,则椭圆的离心率e的取值范围是(
A.
B.
C.
D.

【答案】D
【解析】解:A1(﹣a,0),A2(a,0),设P(x,y),则 =(﹣x,﹣y), =(a﹣x,﹣y),
,∴(a﹣x)(﹣x)+(﹣y)(﹣y)=0,y2=ax﹣x2>0,∴0<x<a.
代入 =1,整理得(b2﹣a2)x2+a3x﹣a2b2=0 在(0,a )上有解,
令f(x)=(b2﹣a2)x2+a3x﹣a2b2=0,∵f(0)=﹣a2b2<0,f(a)=0,如图:
△=(a32﹣4×(b2﹣a2)×(﹣a2b2)=a2( a4﹣4a2b2+4b4 )=a2(a2﹣2b22≥0,
∴对称轴满足 0<﹣ <a,即 0< <a,∴ <1,
,又 0< <1,∴ <1,故选 D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱锥V﹣ABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的焦距为2 ,长轴长为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,过坐标原点O作两条互相垂直的射线,与椭圆C交于A,B两点.设A(x1 , y1),B(x2 , y2),直线AB的方程为y=﹣2x+m(m>0),试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4一4:坐标系与参数方程

已知曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点的极坐标分别为,直线与曲线相交于两点,射线

与曲线相交于点,射线与曲线相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(
A.(
B.[ ]
C.(
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平面多边形中,四边形为正方形, ,沿着将图形折成图2,其中 的中点.

(1)求证:

(2)求四棱锥的体积.

查看答案和解析>>

同步练习册答案