精英家教网 > 高中数学 > 题目详情
5.已知i是虚数单位,则复数($\frac{1+i}{1-i}$)5的值为(  )
A.iB.-iC.1D.-1

分析 由$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=i,i4=1.代入即可得出.

解答 解:∵$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,i4=1.
∴复数($\frac{1+i}{1-i}$)5=i5=i.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义、复数的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9有2条公切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在区间[0,a](a>0)上的最小值
(2)若对任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=log${\;}_{\frac{1}{2}}$(x2-6x+8)的值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log${\;}_{\frac{1}{2}}$x.
(1)解不等式:f(x2-x-2)+1>-log2(x-1);
(2)设函数g(x)=[$\frac{1}{2}$f(x)]2-f($\sqrt{x}$)+5,求x∈[2,4]时,函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx,则二项式(x2-$\frac{a}{x}$)5的展开式中x的系数为(  )
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,向量$\overrightarrow{OP}$=(n,$\frac{{S}_{n}}{n}$),$\overrightarrow{O{P}_{1}}$=(m,$\frac{{S}_{m}}{m}$),$\overrightarrow{O{P}_{2}}$=(k,$\frac{{S}_{k}}{k}$),且$\overrightarrow{OP}$=λ$\overrightarrow{O{P}_{1}}$+μ$\overrightarrow{O{P}_{2}}$,已知m,n,k∈N*且互不相等,则用m,n,k表示μ=(  )
A.μ=$\frac{k-n}{k-m}$B.μ=$\frac{n-m}{n-k}$C.μ=$\frac{n-m}{k-m}$D.μ=$\frac{k-m}{k-n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求由y=x2,y=2x,y=x围成图形的面积$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)是(x2+$\frac{1}{2x}$)6展开式的中间项,若存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使f(x)≤mx成立,则实数m的取值范围是(  )
A.(-∞,$\frac{5}{4}$)B.(-∞,$\frac{5}{4}$]C.($\frac{5}{4}$,+∞)D.[$\frac{5}{4}$,+∞)

查看答案和解析>>

同步练习册答案