精英家教网 > 高中数学 > 题目详情

【题目】已知某产品的历史收益率的频率分布直方图如图所示:

(1)试计算该产品收益率的中位数;

(2)若该产品的售价(元)与销量(万件)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组的对应数据:

售价(元)

25

30

38

45

52

销量(万份)

7.5

7.1

6.0

5.6

4.8

据此计算出的回归方程为,求的值;

(3)若从上述五组销量中随机抽取两组,求两组销量中恰有一组超过6万件的概率.

【答案】(1) ;(2) ;(3).

【解析】试题分析:(1)利用频率分布直方图求出该产品收益率的中位数;(2)由表格易得: ,利用回归直线经过样本中心点,求出的值;(3)利用古典概型公式求出两组销量中恰有一组超过6万件的概率.

试题解析:

解:(1)依题意,所求中位数为

(2)

(3)依题意,所有销量情况为 ,恰有一组超过6万件的情况为 ,故所求概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)若 是直线轴的交点, 是圆上一动点,求的最大值;

(Ⅱ)若直线被圆截得的弦长等于圆的半径倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知.f(x)=sinxcosx-cos2x

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;

(2)当0≤x时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,点 是椭圆上异于长轴端点的两个点.

(1)求椭圆的离心率;

(2)已知直线 ,且,垂足为 ,垂足为,若,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是(  )
A.y= 与y=
B.y=lnex与y=elnx
C.y= 与y=x+3
D.y=x0与y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:

评分等级

☆☆

☆☆☆

☆☆☆☆

☆☆☆☆☆

小学

2

7

9

20

12

中学

3

9

18

12

8

(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?

学校类型

满意

不满意

总计

小学

50

中学

50

总计

100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的定义域为A,函数g(x)=lg(x﹣1),x∈[2,11]的值域为B,则A∩B为(  )
A.(﹣∞,1)
B.(﹣∞,1]
C.[0,1]
D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求曲线在点处的切线方程;

(2)是自然对数的底数)时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)递增区间;
(2)求f(x)的对称轴方程;
(3)求f(x)的最大值并写出取最大值时自变量x的集合.

查看答案和解析>>

同步练习册答案