【题目】已知命题p:方程 =1所表示的图形是焦点在y轴上的双曲线,命题q:复数z=(m﹣3)+(m﹣1)i对应的点在第二象限,又p或q为真,p且q为假,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,短轴长为 ,过右焦点F的直线l与C相交于A,B两点.O为坐标原点.
(1)求椭圆C的方程;
(2)若点P在椭圆C上,且 = + ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到f( )+f( )+…+f( )+f( )的值为( )
A.4027
B.﹣4027
C.8054
D.﹣8054
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照, ,…, 分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中 的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果存在区间(),同时满足:
①在内是单调函数;②当定义域是时, 的值域也是.
则称函数是区间上的“保值函数”.
(1)求证:函数不是定义域上的“保值函数”;
(2)已知()是区间上的“保值函数”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣1(x≥0)的图象经过点(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函数f(x)=a2x﹣ax﹣2+8,x∈[﹣2,1]的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com