精英家教网 > 高中数学 > 题目详情

【题目】如图,已知矩形ABCD中,M是以CD为直径的半圆周上的任意一点(与CD均不重合),且平面平面ABCD.

1)求证:平面平面BCM

2)当四棱锥的体积最大时,求AMCD所成的角.

【答案】1)证明见解析 2

【解析】

1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CMDM,由面面垂直的性质即可证明;(2)当四棱锥MABCD的体积最大时,M为半圆周中点处,可得角MAB就是AMCD所成的角,利用已知即可求解.

1)证明:CD为直径,所以CMDM

已知平面CDM平面ABCD ADCD

AD平面CDM,所以ADCM DMAD=D

CM平面ADM CM平面BCM

平面ADM平面BCM

2

M为半圆弧CD的中点时,四棱锥的体积最大,

此时,过点MMOCD于点E,

平面CDM平面ABCD

MO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2

AMCD所成的角即AMAB所成的角,

求得为正三角形,

,故AMCD所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面ABCDM是线段AB的中点.

1)求证:平面PAB

2)已知点N是线段PB的中点,试判断直线CN与平面PAD的位置关系,并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中表示不超过的最大整数,下列关于说法正确的有:______

的值域为[-1,1]

为奇函数

为周期函数,且最小正周期T=4

在[0,2)上为单调增函数

的图像有且仅有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像与轴的相邻两交点的坐标分别为,且当时,有最小值.

1)求函数的解析式及单调递减区间;

2)将的图像向右平移个单位,再将所得图像的横坐标伸长为原来的倍(纵坐标不变),得到函数的图像,若关于的方程在区间上有两个解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.

1)证明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:

每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7.

1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;

2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;

3)根据表中数据估算两公司的每位员工在该月所得的劳务费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆上的动点,点轴上的投影为,点为线段AB的中点,设点的轨迹为

1)求点的轨迹的方程;

2)已知直线交于两点,,若直线的斜率之和为3,直线是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案