精英家教网 > 高中数学 > 题目详情
17.在等差数列{an}中an>0,且a1+a2+…+a20=60,则a10•a11的最大值等于(  )
A.3B.6C.9D.36

分析 由等差数列{an}的性质及其a1+a2+…+a20=60,可得$\frac{20({a}_{1}+{a}_{20})}{2}$=$\frac{20({a}_{10}+{a}_{11})}{2}$=60,再利用基本不等式的性质即可得出.

解答 解:由等差数列{an}的性质及其a1+a2+…+a20=60,
∴$\frac{20({a}_{1}+{a}_{20})}{2}$=$\frac{20({a}_{10}+{a}_{11})}{2}$=60,
∴a10+a11=6,又an>0,
∴$6≥2\sqrt{{a}_{10}•{a}_{11}}$,
∴a10•a11≤9,
故选:C.

点评 本题考查了等差数列的通项公式及其性质与前n项和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,直线l经过第二、第三、第四象限,l的倾斜角为α,斜率为k,则(  )
A.ksin(π+α)>0B.kcos(π-α)>0C.ksinα≤0D.kcosα≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点O,焦点在坐标轴上的椭圆E经过两点$R({-\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{6}}}{2}}),Q({\frac{3}{2},\frac{{\sqrt{2}}}{2}})$.分别过椭圆E的焦点F1、F2的动直线l1,l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4
(1)求椭圆E的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,则这个平面图形的面积为(  )
A.$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$B.1+$\frac{\sqrt{2}}{2}$C.1+$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在长方体ABCD-A1B1C1D1中,二面角D-AB-D1的大小为45°,DC1与平面ABCD所成角的大小为30°,那么异面直线AD1与DC1所成角的余弦值是(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤3}\\{f(6-x),3<x<6}\end{array}\right.$,设方程f(x)=2-x+b(b∈R)的四个实根从小到大依次为x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中一定正确的为(  )
A.x1+x2=2B.9<x3•x4<25C.0<(6-x3)•(6-x4)<1D.1<x1•x2<9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则∁U(A∪B)=(  )
A.{5}B.{2}C.{1,2,3,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在正四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是(  )
A.EF与BB1垂直B.EF与BD垂直C.EF与CD异面D.EF与A1C1异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x2-1(2<x<3)的反函数为(  )
A.f-1(x)=$\sqrt{x-1}$(3<x<8)B.f-1(x)=$\sqrt{x+1}$(3<x<8)C.f-1(x)=$\sqrt{x-1}$(4<x<9)D.f-1(x)=$\sqrt{x+1}$(4<x<9)

查看答案和解析>>

同步练习册答案