精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
y≥0
x+y≤3
3x+y≥3

(1)在如图所示的坐标系中画出约束条件表示的图形并求其面积.
(2)求目标函数z=5x+y的最大值.
分析:(1)作出不等式组对应的平面区域,根据图象求面积即可.
(2)利用目标函数的几何意义,利用数形结合确定z的最大值.
解答:解:(1)作出不等式组对应的平面区域如图:(阴影部分ABC).
则AC=2,B(0,3),
∴三角形ABC的面积为
1
2
×2×3=3

(2)由z=5x+y得y=-5x+z,
平移直线y=-5x+z,
由图象可知当直线y=-5x+z经过点C时,直线y=-5x+z的截距最大,
此时z最大.
将C(3,0)的坐标代入目标函数z=5x+y,
得z=5×3=15.
即z=5x+y的最大值为15.
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,则目标函数u=x2+y2的最大值M与最小值N的比
M
N
=(  )
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+y≥2
x≤1
y≤2
,则目标函数z=-x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河西区一模)设变量x、y满足约束条件
y≥0
x-y+1≥0
x+y-3≤0
,则z=2x+y的最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设变量x,y满足约束条件
2x-y≤0
x-3y+5≥0
x≥0
,则目标函数z=x-y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)设变量x,y满足约束条件
x+1≥0
x-y+1≤0
x+y-2≤0
,则z=4x+y的最大值为(  )

查看答案和解析>>

同步练习册答案