精英家教网 > 高中数学 > 题目详情
14.已知sinα+cosα=-$\frac{1}{5}$,且π<α<2π,则:
(1)sinα•cosα=-$\frac{12}{25}$;(2)sinα-cosα=-$\frac{7}{5}$.

分析 (1)sinα+cosα=-$\frac{1}{5}$,且π<α<2π,两边平方化简即可得出;
(2)由(1)可知:$\frac{3}{2}$π<α<2π,sinα-cosα=-$\sqrt{(sinα+cosα)^{2}-4sinαcosα}$,代入即可得出.

解答 解:(1)∵sinα+cosα=-$\frac{1}{5}$,且π<α<2π,
∴sin2α+cos2α+2sinαcosα=$\frac{1}{25}$,
解得sinα•cosα=-$\frac{12}{25}$.
(2)由(1)可知:$\frac{3}{2}$π<α<2π,
则sinα-cosα=-$\sqrt{(sinα+cosα)^{2}-4sinαcosα}$=-$\frac{7}{5}$.
故答案分别为:-$\frac{12}{25}$;-$\frac{7}{5}$.

点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4ax,x≥0}\\{-{x}^{2}-3ax,x<0}\end{array}\right.$,a∈R
(Ⅰ)若关于x的方程f(x)=a-3有三个不同的根,求a的取值范围;
(Ⅱ)若对于任意的x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设0<a<1,若对任意的x∈[a,2a],都有y∈[$\frac{a}{2}$,2a]满足方程logay-logax=1,则实数a的取值范围是$[\frac{1}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于任何实数x,函数f(x)=x2+x+1在区间(0,+∞)内是增(增或减)函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知动点P与两定点A(-2,0),B(2,0)连线的斜率之积为-$\frac{1}{4}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若过点F(-$\sqrt{3}$,0)的直线l与轨迹C交于M、N两点,且轨迹C上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证:$\frac{1-sinα+cosα}{1+sinα+cosα}$=$\frac{1-sinα}{cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a是实数,方程4ax2-(4a+2)x+5a+1=0在区间[2,+∞)上至少有一个实根,则实数a的取值范围为(0,$\frac{3}{13}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是定义在R上的奇函数,记其导函数为f′(x),f(1)=0,且当x>0时,f′(x)>$\frac{f(x)}{x}$恒成立,则不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程x2+2mx-m+12=0的两根都大于2,求实数m的取值范围.

查看答案和解析>>

同步练习册答案