精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系中,射线,曲线的参数方程为为参数),曲线的方程为;以原点为极点,轴的非负半轴为极轴建立极坐标系.曲线的极坐标方程为.

(Ⅰ)写出射线的极坐标方程以及曲线的普通方程;

(Ⅱ)已知射线交于,与交于,求的值.

【答案】(Ⅰ) ;(Ⅱ).

【解析】

(Ⅰ)依题意,根据极坐标与直角坐标的互化公式,以及参数方程与普通方程的互化,即可得到射线的极坐标方程以及曲线的普通方程;

(Ⅱ)曲线的方程为,得到曲线的极坐标方程为,根据极径的几何意义,即可求解。

(Ⅰ)依题意,因为射线,故射线

因为曲线为参数),可得曲线.

(Ⅱ)曲线的方程为,故

故曲线的极坐标方程为,设点对应的极径分别为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1)求椭圆的标准方程;

2)已知点,和平面内一点),过点任作直线与椭圆相交于两点,设直线的斜率分别为,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)的方格表中的每个元素都是绝对值不大于1的实数,且方格表中所有元素之和等于0,试求最小的非负实数,使得每个这样的方格表中必有一行或一列,其元素之和的绝对值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017915日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

80

年龄大于50

10

合计

70

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为[15],部分对应值如下表,的导函数的图象如图所示,下列关于的命题正确的是(

0

4

5

1

2

2

1

A.函数的极大值点为04

B.函数[02]上是减函数;

C.如果当时,的最大值是2,那么的最大值为4

D.函数的零点个数可能为01234个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在任何个连续的正整数中,使得必有一数其各位数字之和是7的倍数成立的最小的正整数______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若函数是增函数,则称函数具有性质A

,求的解析式,并判断是否具有性质A

判断命题“减函数不具有性质A”是否真命题,并说明理由;

若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次测验,将20名学生平均分为两组,测验结果两组学生成绩的平均分和标准差分别为906804.则这20名学生成绩的方差为_____

查看答案和解析>>

同步练习册答案